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EQUILIBRIUM OF A SYSTEM OF CRACKS WITH CONTACT AND OPENING REGIONS* 
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The equilibrium of a system of rectilinear cracks is considered within 
the framework of the plane theory of elasticity, taking into account 
the possibility of the formation of contact regions on their surfaces. 
In this case a jump in the normal displacement is specified on a part 
of the crack surface (within the area of contact), and a normal stress 
in the opening region. The shear stress is specified along the whole 
crack. 

The well-known integral equations IIE) obtained for cracks without contact regions /l-3/ 
cannot be used to solve the problem in question, since the loads in them are assumed given 
along the whole crack, whereas within the regions of contact between its surfaces the normal 
stresses are not known. 

In order to overcome this difficulty, a different method of deriving the IE is proposed, 
describing the distribution of the jump in displacement along the crack. The possibility of 
representing the solution of the initial problem in the form of the sum of solutions of two 
problems for the initial crack, namely, of the problem of a crack with an unknown jump in 
shear displacements, but with shearing loads specified along it, and of the problem of 
determining the opening regions along the initial crack with unknown normal displacement 
jump and normal loads specified in these regions, is used. This makes it possible to obtain 
a system of IE written for the contact and opening regions, 
hand sides. 

respectively, with separated right- 
In one equation the right-hand side contains the known normal stresses and in 

the other the shear stresses. The solution of the resulting system yields the distribution 
of displacement jumps along the crack and the unknown boundaries of the contact and opening 
regions. The condition determining the position of the opening regions is that there are no 
singularities in the stress distribution near the unknown boundaries of these reqions 141. 
~~~.~ate~.~ek~n.,~5~4,672-6?8,~99~ 
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The stresses within the areas of contact are calculated from their integral representations 
in terms of displacement jumps. 

As an example, we consider the problem of a crack in a half-plane due to the action of 
shear and normal loads. 

1. Pomktion of the ppoblk. Let us consider, in an elastic plane, using the XOY 
system of coordinates, a system of N rectilinear cuts L, of length 21,, along which regions 

of contact and opening may occur. The boundary conditions at the crack & have the follow- 
ing form 111 in the local XgOYt system of coordinates (the YE axis is normal to the crack 

uk = ok’, ZkEDkcLk; ‘ck =TkO, ZkELk 
(1.1) 

y(k) xi= 0, .?8k E FI, i Lk 

Fk is the region of contact of the surfaces of the k-th crack, while I)t is the region of 
opening of the k-th crack, nor) = n+(r) _ &k) is the jump in the normal component of the 
displacement, u(k) = u+(k) - u-(k) is the jump in the shear component of the displacement, and 
uk’> zk” are prescribed loads at the crack. We shall assume that there are no loads outside 
the crack. The passage to boundary conditions at the crack is made using the well-known 
Huckner method, and we used in /4/ for problems with contact regions. 

In order to describe the stress-deformation state of an elastic body with cracks under 
boundary conditions (1.11, we shall use the integral representations connecting the jumps in 
displacements along the crack, with the stresses at the crack. These representations are 
mentioned e.g. when constructing a system of IE for the cleavage cracks, and have the form 
/l/ 

nP,(X)= $ g+k$(;( gk'(t)K,k(t,2)-i-g,'(t)L,k(t,2))dt 
-k fG+;n k 

(1.2) 

L 
f g,’ (t)dt = 0, 13: 1 <I,>, n = 1, . . ., N (1.31 
--% 

P, (x) = 'I,@ - iz,,", g,' (5) = 4 (x) - uk’ (x) 

u+ (CT) = $f 1) u,(k) (cr), uk (r) = 

Here u is the shear modulus, x=3-& for plane deformation and x = (3 -vY)!(f -!-v) 
for plane state of stress, v is Poisson‘s ratio and z&f (z), dk) (z) are the displacement 
components at the k-th crack in a local X,Y, system of coordinates. This expression was 
obtained under the condition that there are no displacement jumps at the ends of the crack 
(1.3). The kernels L,k and K,, are regular and their form can be found for a system of N 
cracks in a plane, in /l/. We note that the representations (1.2) for N cracks also retain 
their form and structure in various problems of the equilibrium of N cracks not only in a 
plane, but also in bodies of other shapes, the expression for the regular kernels &, and 
L nk ,flf being the only ones that change. The expression for these kernels in the case of 
the loading N cracks in a half-plane, strip and a disc, can be found in 111. 

We will now consider a useful feature of representations (1.2) with condition (1.31, 
which can be used to calculate the stresses along any straight line outside N cracks in bodies 
of different shapes for which the kernels Knk, L,k are known. This is usually carried out 
using the well-known Kolosov-Muskhelishvili representation, which is laborious. Thus, let N 
cracks exist in a body of prescribed geometry and let the kernels K,,k, Lltk (1.21 be known. 
We need to find the distributions of the stresses along a straight line with direction 
passing through the point (X0, $f"). We place along this direction the (Hi,*)-th crack wi% 
displacement jump gN+z = 0 whose centre lies at the point (s". Y3 and the length b+r 

is arbitrary. Then the relations (1.2) will yield the distribution of the stresses PN+~(.$ 

along this direction in the local XN+~YNA~ system of coordinates. The above procedure 
enables us to calculate the stresses without resorting to the Kolosov-Muskhelishvili formulas, 
by directly using the well-known expressions for the kernels &et Lnk. 

If on the other hand the boundary conditions are given in terms of the stresses along 
the whole crack [or system of cracks), then representation (1.2) will lead directly to 
integral equations that are singular with respect to derivatives of the displacement jump 
which are, in this case, unknown along the whole crack. 

In the present case, when contact regions may be generated, the boundary conditions axe 
given in the zones of the crack opening in terms of the StreSSeS, and in the contact zones 
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partly in displacements and partly in stresses. The unknown quantities are the displacement 

jumps in the opening regions, contact stress and the jump in displacement shear component in 
the contact zones, as well as the boundary of the contact zone. In order to arrive in this 

case at the integral equation for the unkown displacement jumps starting from (l-2), we 
propose below a method of transforming the initial problem leading to representations of the 
type (1.2), written for the unknown components of displacement jumps in terms of the known 
load components for the corresponding regions. 

2. Iterivation of the system of SntegraZ eqwatbzs. We shall first assume that the 
boundaries of the opening zones are given and consider an approach connected with obtaining 
a representation analogous to (1.2), which will enable us to derive a system of integral 
equations describing the displacement jumps at the cracks with contact and opening regions 
corresponding to the boundary-vaiue problem (1.1). After obtaining such a system, we shall 
supplement it with a method of determining the unknown boundaries of the contact and opening 
regions. 

We shall number the opening regions along the k-th crack thus: lb, &, . . .,i,, to the 
left we have (2~ = -&) and to the right we have (5~ = It), in the local X,Y, system of 
coordinates.Therefore, we have in the,i,opening regions (iE> 1) for the k-th crack (the case 
of ik = 0 has no opening regions). Let us use relations (1.2) with condition (1.3). The 
relations determine the stresses at the crack depending on the displacement jumps. We shall 
assume, when constructing the system integral of equations, that the displacement jumps in 
the opening and contact regions are known. Then the stresses at the line of the crack governed 
by these displacement jumps can be found using formulas (1.2). Indeed, writing these 
relations separately for the normal and shear stresses and passing to the local coordinate 
systems associated with the centres of regions of shear (they are the cracks L,, n = 1, . . . . N) 
and with centres of the regions of contact, we obtain the stresses in these regions in terms 
of the corresponding displacement jumps. 

Let the stresses u,fA) (s), T,@) (z), x E L, (n = 1, . . ., N) correspond to the shear dis- 
placement jump along the crack L,, and the stresses O,(~)(X), Z,,@)(Z), .XE L, (n = 1, . . . . N) 
to the jump in the normal component of the displacements. The sum of these stresses in the 
corresponding regions must be equal to the applied loads 

U,(A) (r) + u,(a) (x) = 0,(o) (.z), I E D,(j) (i = 1,, . ., i,, 
n = 1, . . . . N) 

Z,(A) (x) + r-,(B) (a$ = t,(o) (z), t E L, (n = 1, . . ., M) 

Thus we arrive at the system integral equations, written separately for the shear and 
normal components of the loads in the corresponding regions 

,(j) 

ucI(” dt =0, 

where E,(j) is the length of the opening regions and (~~,~(f),y,~(~)) are the coordinates of 

the centres of the opening regions (j = I,, . . . . ,,, i. n=l , . . . . N). 
If there are no contact regions 1,(J) = II, on some crack, then system (2.1) will be 

identical with (1.2) obtained in II/, but written separately for different stresses. We note 
that the opening regions are always denoted by a double index. The subscript refers to the 
number of the crack, and the superscript to the opening region. The region of shear has 
zero superscript. Therefore, when using the expression for the kernels K,k, L,k from /l/, 
we must replace in the case of the opening region, 
index (. . .m3 or . . . ,f), 

the corresponding index n or k by a double 
for example instead of Ka, we shall have K&f), where n is 

the number of the crack, j is the number of the opening region on it, and the shear regions 
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have zero (.. . mB or . . . ~‘1. 
The resulting system of integral equations can be interpreted as a system of equations 

describing the equilibrium of N prescribed cracks with a shear displacement jump and 

Zir in k from 1 to N cracks with a normal displacement jump, whose centres are situated 

in the opening regions (z,W, ),/,0(n) and the lengths are equal to 21,(j). 

Thus we obtain a system of equations describing the equilibrium systems of cracks with 
contact and opening regions, and on the left-hand side of the integral with the Cauchy kernel 
is taken over the region in which the loads appearing on the right-hand side are specified, 
and this enables us to solve this system of equations. 

As we said before, relation (1.2) with condition (1.3) also retains its form in bodies 
of any shape, and only the form of kernels K,,k, L,,, changes and can be found in /l/ for 
a disc and a half-plane. Therefore the system of Eqs.(S.l) will also describe the equilibrium 
of N cracks with contact and opening regions in this case for the corresponding kernels K,k, 
&k. 

System (2.1) in dimensionless form is analogous to the usualsystem of singular integral 
equations fox a system of cracks of length equal to two /l/. A numerical solution of such 
a system can be carried out either using the well-known method of mechanical quadratures /I/, 
or by regularizing and reducing it to a system of Fredholm integral equations /5/. 

However, in the case when the contact regions appear on the cracks, the system (2.1) 
will contain unknown boundaries of the contact regions I, <j < i,, n = 1, . . . . rli, and we must 
therefore show how to determine them-According to the results of an analysis in /4/ the contact 
regions will appear at sites where the crack surfaces would otherwise'overlap,were the contact 
regions not introduced. Therefore we shall take, as the opening region, to a first approxi- 
mation, the region where no such overlap occurs, and extend it until the stress intensity 
factor at the boundary of the opening region becomes equal to zero /4/ to within prescribed 
accuracy. 

3. EzumpZe. Let us consider a crack of length 22 whose centre lies at a depth H below 
the surface of the half-plane, directed at an angle a to this surface. We place the XY 
system of coordinates at the boundary of the half-plane (with the Y axis directed inwards 
through the centre of the crack). 

We shall assume that only a single opening region forms at the cracks, and denote its 
length by 2~. The kernels AnK. J&k are obtained for the system of Eqs. (1.2) in the case of 
opening cracks in /l/. Using their expression, we shall write the system of Eqs.(2.1) in 
the form 

(3.1) 

Here d is the distance between the centres of the crack and the opening region (the 

minus sign is used if the coordinate of the centre of the opening region in the local system 
of coordinates X,oYl is z,“'" > 0, and plus if z~(~)' < 0). 

System (3.1) is simplest in the case when the crack is parallel to the boundary of the 
half-plane (a = 0). In dimensionless form system (3.1) when a=@ will become, 

(3.2) 
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I 

s 8H,’ 
u’dt~(3~l/a-~tA~)*-4H,*)dt=n~1~, ItlCl 

-1 
H, 5 Hlo, HI = H/l, D = (E, - t)$ $ 4X,’ 

D, = (&t - t T Al)* + 4Haa, AI = d/l 

D, = (% - ty + 4H*’ 
Da = (@la - t f A,)g + 4H,$, hr = d/a 

When there is no region of contact, system (3.2) will be identical with one obtained 
earlier 11-31. 

We see that the solution for a crack parallel to the boundary under the action of a 
shear stress rIO= -~,e,(lM=O only, is antisymmetric with respect to the centre of the crack. 
Consequently I&+ (which corresponds to y= I) and IS,- (which corresponds to x1=-0 will 
have opposite signs. According to the results in /l-3/ ii,-CO, which corresponds to v(z1)<0 
when ~~2-1 and to overlap of the crack surfaces. Therefore, a contact region will appear 
near the end zl= -1 whose size 2a can be found using the algorithm given at the end of 
Sect.2, from the conditions that the solution contains no singularities near this boundary. 
Also, we should take the lower sign in the integrand in (3.2). 

Let us first consider the asymptotic expression for system (3.2) as H-m, Z= const 
under the load %Ia = -7, aI( = 0. T o a first approximation in 1/H the jump in the shear dis- 
placement is equal to L(z~)= +(1- QP)%. In this case the jump in normal displacement will be 
found from the second equation of (3.2) to a first approximation in VH, whose solution 
has the form 

(3.3) 

Determiningthe unknown boundary of the contact zone from the condition that there are 
no singularities when E= -i, we arrive at the equation f(b)= 35bS-60bs+ 45b- 14= 0. We have 
f (0) = -14. f(m) > 0, therefore there exists at least one real soot. Confirming the fact that 
f'(b)>O,Odbdm, we conclude that only one real root exists, which is equal to b= 0.69,a= 
0.691. 

Thus we have found that to a first approximation the opening region does not depend on 
the depth H, nor on the magnitude of shear stress 7. According to (3.3), when H-w, the 
value of the opening of the crack tends to zero as P/H', at every point of the opening 
region, while the size of the opening region remains unchanged and equal to O= 0.691. fn the 
limit when H=m, there is no opening and the solution is identical with the solution of 
the problem of a shear crack in an infinite plane. 

Wis note that-an analogous result is obtained for a crack 
running along a circumference of radius R, and for a crack in the 
form of a strip on a cylindrical surface of radius R under a shear 
load 17, 0/. In this case, when the crack is under a shear stress, 
an opening region is also generated whose length does not depend 
on R as R--r= and is finite, while the size of the opening of the 
crack surface tends to zero. 

System (3.2) was solved numerically using the method of 
mechanical quadratures, for certain parameters T1" = -7, #YJ z (J 
and HI1 (we recall that we take the lower sign in (3.2)). We seek 
the length 2a of the opening region by consecutive approximations 
using the algorithm of Sect.2. 

The figure shows the dependence on Hil of the stress 
intensity factors for u = 0: &+/(zfl (curve I), 
and &Y@db (curve 3). 

K,/(r$T) (curve 2) 
The plus sign corresponds to the tip of 

the crack z1 = 1 and the minus sign to the tip of the crack 
Q= --I. The dots denote the results of computing KIV(%_tiij without 
taking into account the contact region. All these relations imply 
that the stress intensity factor K 1+ becomes larger than the 
analogous factor calculated without taking into account the contact 
region. The change in the length 2a of the opening region is also 
shown, depending in this case on Nil. 
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The ratio cir 
0.13, 0.088, 0.002, o& = 

for which the crack is either fully open (%) or fully closer? (a,): q/z= 
-0.29. -0.19, -0.005, was calculated for H/l = 0.6, 1, 5. 

The change as a function of e/-c in the length 2a of the opening region and in the 
stress intensity factors for HI1 = 0.6, were also calculated: 

=it -0.29 -0.20 -0.12 0.00 0.00 0.13 
a/E 0.00 0.42 0.55 0.73 0.83 1.048 
Ka+/(rdiS 1.111 1.112 1.116 1.139 1.148 1.177 
b-/b I/ti 1.111 1.109 1.060 1.090 1.075 1.048 
Kit/(7 fi O.WO 0.116 0.207 0.506 0.444 0.534 

The above results show that when o< o,<O, we have K$ ==O, and for acco<ot we 
have K,-=0 and the limiting equilibrium of the crack will be determined, in this case, by 
the stress intensity factor K,* for D <oo,(O and W:, K: for q < (I. 
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